Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
EMBO J ; 42(21): e113975, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37718683

ABSTRACT

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Subject(s)
Microbiota , Paneth Cells , Humans , Animals , Mice , Paneth Cells/metabolism , Paneth Cells/pathology , Intestine, Small , Inflammation/pathology , Cytokines/metabolism
2.
World J Gastroenterol ; 29(21): 3222-3240, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37377591

ABSTRACT

Crohn's disease (CD) is an inflammatory bowel disease characterized by immune-mediated flares affecting any region of the intestine alternating with remission periods. In CD, the ileum is frequently affected and about one third of patients presents with a pure ileal type. Moreover, the ileal type of CD presents epidemiological specificities like a younger age at onset and often a strong link with smoking and genetic susceptibility genes. Most of these genes are associated with Paneth cell dysfunction, a cell type found in the intestinal crypts of the ileum. Besides, a Western-type diet is associated in epidemiological studies with CD onset and increasing evidence shows that diet can modulate the composition of bile acids and gut microbiota, which in turn modulates the susceptibility of the ileum to inflammation. Thus, the interplay between environmental factors and the histological and anatomical features of the ileum is thought to explain the specific transcriptome profile observed in CD ileitis. Indeed, both immune response and cellular healing processes harbour differences between ileal and non-ileal CD. Taken together, these findings advocate for a dedicated therapeutic approach to managing ileal CD. Currently, interventional pharmacological studies have failed to clearly demonstrate distinct response profiles according to disease site. However, the high rate of stricturing disease in ileal CD requires the identification of new therapeutic targets to significantly change the natural history of this debilitating disease.


Subject(s)
Crohn Disease , Ileal Diseases , Ileitis , Humans , Crohn Disease/epidemiology , Crohn Disease/genetics , Crohn Disease/therapy , Ileum/pathology , Ileitis/pathology , Inflammation/pathology , Paneth Cells/metabolism , Paneth Cells/pathology , Ileal Diseases/pathology
3.
Eur J Pediatr ; 182(6): 2775-2784, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37017768

ABSTRACT

Previous studies suggest that Paneth cells are involved in NEC development. Defensin alpha 6 (DEFA6) and guanylate cyclase activator 2A (GUCA2A) are selective protein markers of Paneth cells. The objective was to explore DEFA6 and GUCA2A expression in intestinal tissue samples from newborn infants with and without NEC. Tissue samples from histologically intact intestine were analyzed from 70 infants: 43 underwent bowel resection due to NEC and 27 controls were operated due to conditions such as intestinal atresia, dysmotility, aganglionosis, pseudo-obstruction or volvulus. Each tissue sample was immunohistochemically stained for DEFA6 and GUCA2A. Semi-automated digital image analysis was performed to determine protein expression. Clinical data and protein expressions were compared between the groups. DEFA6 expression was lower in the NEC group (p = 0.006). Low DEFA6 correlated with risk of developing NEC in a logistic regression analysis, independently of gestational age and birth weight (OR 0.843 [CI 0.732-0.971]; p = 0.018). GUCA2A expression did not differ between the two groups. CONCLUSION: Lower expression of DEFA6 together with intact GUCA2A expression indicates that NEC patients have well-defined Paneth cells but diminished defensin activity. Our results suggest that DEFA6 could be used as a biomarker for NEC. WHAT IS KNOWN: • Previous studies of defensin activity in NEC have been inconsistent, showing that defensin levels may be increased or diminished in NEC. GUCA2A has to our knowledge never been studied in NEC. WHAT IS NEW: • This study benchmarks two specific Paneth cell markers (DEFA6 and GUCA2A) and their activity in individuals with and without NEC. • The key finding is that the NEC group had a lower DEFA6 expression compared to the Controls, while the expression of GUCA2A did not differ between the groups.


Subject(s)
Enterocolitis, Necrotizing , Infant, Newborn, Diseases , Infant , Infant, Newborn , Humans , Paneth Cells/metabolism , Paneth Cells/pathology , Enterocolitis, Necrotizing/diagnosis , Birth Weight , Gestational Age , Defensins/metabolism
4.
Sci Rep ; 13(1): 3953, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894646

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fibrosis that develops from fatty liver. Disruption of intestinal microbiota homeostasis, dysbiosis, is associated with fibrosis development in NASH. An antimicrobial peptide α-defensin secreted by Paneth cells in the small intestine is known to regulate composition of the intestinal microbiota. However, involvement of α-defensin in NASH remains unknown. Here, we show that in diet-induced NASH model mice, decrease of fecal α-defensin along with dysbiosis occurs before NASH onset. When α-defensin levels in the intestinal lumen are restored by intravenous administration of R-Spondin1 to induce Paneth cell regeneration or by oral administration of α-defensins, liver fibrosis is ameliorated with dissolving dysbiosis. Furthermore, R-Spondin1 and α-defensin improved liver pathologies together with different features in the intestinal microbiota. These results indicate that decreased α-defensin secretion induces liver fibrosis through dysbiosis, further suggesting Paneth cell α-defensin as a potential therapeutic target for NASH.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , alpha-Defensins , Animals , Mice , Amino Acids , Choline , Diet, High-Fat/methods , Dysbiosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Paneth Cells/pathology
5.
Mucosal Immunol ; 16(4): 373-385, 2023 08.
Article in English | MEDLINE | ID: mdl-36739089

ABSTRACT

Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs. These changes become more pronounced after colonization with IL-17 inducing segmented filamentous bacteria. Mice with PCs that lack IL-17R show an increased inflammatory transcriptional profile in the ileum along with the severity of experimentally induced ileitis. These changes are associated with a decrease in the diversity of gut microbiota that induces a severe ileum pathology upon transfer to genetically susceptible mice, which can be prevented by the systemic administration of IL-17a/f in microbiota recipients. In an exploratory analysis of a small cohort of pediatric patients with Crohn's disease, we have found that a portion of these patients exhibits a low number of lysozyme-expressing ileal PCs and a high ileitis severity score, resembling the phenotype of mice with IL-17R-deficient PCs. Our study identifies IL-17R-dependent signaling in PCs as an important mechanism that maintains ileal homeostasis through the prevention of dysbiosis.


Subject(s)
Ileitis , Microbiota , Receptors, Interleukin-17 , Animals , Child , Humans , Mice , Antimicrobial Peptides , Dysbiosis/microbiology , Ileitis/microbiology , Ileum/microbiology , Inflammation/pathology , Interleukin-17 , Paneth Cells/pathology , Receptors, Interleukin-17/genetics
6.
J Gastroenterol ; 58(5): 444-457, 2023 05.
Article in English | MEDLINE | ID: mdl-36739585

ABSTRACT

BACKGROUND: Amino acid transporters play an important role in supplying nutrition to cells and are associated with cell proliferation. L-type amino acid transporter 1 (LAT1) is highly expressed in many types of cancers and promotes tumor growth; however, how LAT1 affects tumor development is not fully understood. METHODS: To investigate the role of LAT1 in intestinal tumorigenesis, mice carrying LAT1 floxed alleles that also expressed Cre recombinase from the promoter of gene encoding Villin were crossed to an ApcMin/+ background (LAT1fl/fl; vil-cre; ApcMin/+), which were subject to analysis; organoids derived from those mice were also analyzed. RESULTS: This study showed that LAT1 was constitutively expressed in normal crypt base cells, and its conditional deletion in the intestinal epithelium resulted in fewer Paneth cells. LAT1 deletion reduced tumor size and number in the small intestine of ApcMin/+ mice. Organoids derived from LAT1-deleted ApcMin/+ intestinal crypts displayed fewer spherical organoids with reduced Wnt/ß-catenin target gene expression, suggesting a low tumor-initiation capacity. Wnt3 expression was decreased in the absence of LAT1 in the intestinal epithelium, suggesting that loss of Paneth cells due to LAT1 deficiency reduced the risk of tumor initiation by decreasing Wnt3 production. CONCLUSIONS: LAT1 affects intestinal tumor development in a cell-extrinsic manner through reduced Wnt3 expression in Paneth cells. Our findings may partly explain how nutrient availability can affect the risk of tumor development in the intestines.


Subject(s)
Adenomatous Polyposis Coli Protein , Amino Acid Transport System y+L , Intestinal Neoplasms , Paneth Cells , Animals , Mice , Cell Transformation, Neoplastic/genetics , Intestinal Mucosa/pathology , Intestinal Neoplasms/metabolism , Intestine, Small/pathology , Intestines , Paneth Cells/metabolism , Paneth Cells/pathology , Adenomatous Polyposis Coli Protein/metabolism , Amino Acid Transport System y+L/metabolism
7.
Nature ; 610(7932): 547-554, 2022 10.
Article in English | MEDLINE | ID: mdl-36198790

ABSTRACT

Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.


Subject(s)
Apoptosis Regulatory Proteins , Crohn Disease , Genetic Predisposition to Disease , Intraepithelial Lymphocytes , Nuclear Proteins , Paneth Cells , Animals , Humans , Mice , Apoptosis Regulatory Proteins/metabolism , Cell Death , Crohn Disease/genetics , Crohn Disease/metabolism , Crohn Disease/pathology , Genetic Predisposition to Disease/genetics , Intestinal Mucosa/pathology , Nuclear Proteins/metabolism , Paneth Cells/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Cell Survival , Organoids , Alleles
8.
Korean J Gastroenterol ; 80(1): 34-37, 2022 07 25.
Article in Korean | MEDLINE | ID: mdl-35879061

ABSTRACT

Paneth cell carcinoma is a rare carcinoma composed predominantly or purely of malignant Paneth cells. An 83-year-old woman presented for evaluation of an elevated lesion in the stomach. On endoscopy, a 15 mm, discolored, elevated lesion with a central depression was found on the greater curvature of the gastric lower body. Endoscopic forceps biopsy revealed chronic gastritis with intestinal metaplasia. Magnifying endoscopy revealed an irregularly oval/tubular microsurface pattern and an irregular loop microvascular pattern with a demarcation line, suggestive of early gastric cancer. Therefore, endoscopic submucosal dissection was performed. Histopathological examination revealed a well-differentiated tubular adenocarcinoma limited to the muscularis mucosae and the tumor cells contained coarse eosinophilic granules in the cytoplasm. These tumor cells were diffusely and strongly stained for lysozyme, confirming the tumor diagnosis as Paneth cell carcinoma. Herein, we report a rare case of Paneth cell carcinoma and its endoscopic and histopathologic findings.


Subject(s)
Carcinoma , Endoscopic Mucosal Resection , Stomach Neoplasms , Aged, 80 and over , Female , Humans , Paneth Cells/pathology , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology
9.
Histochem Cell Biol ; 158(1): 5-13, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35469099

ABSTRACT

Paneth cells are antimicrobial peptide-secreting epithelial cells located at the bottom of the intestinal crypts of Lieberkühn. The crypts begin to form around postnatal day 7 (P7) mice, and Paneth cells usually appear within the first 2 weeks. Paneth cell dysfunction has been reported to correlate with Crohn's disease-like inflammation, showing narrow crypts or loss of crypt architecture in mice. The morphology of dysfunctional Paneth cells is similar to that of Paneth/goblet intermediate cells. However, it remains unclear whether the formation of the crypt is related to the maturation of Paneth cells. In this study, we investigated the histological changes including epigenetic modification in the mouse ileum postnatally and assessed the effect of the methyltransferase inhibitor on epithelium development using an organoid culture. The morphological and functional maturation of Paneth cells occurred in the first 2 weeks and was accompanied by histone H3 lysine 27 (H3K27) trimethylation, although significant differences in DNA methylation or other histone H3 trimethylation were not observed. Inhibition of H3K27 trimethylation in mouse ileal organoids suppressed crypt formation and Paneth cell maturation, until around P10. Overall, our findings show that post-transcriptional modification of histones, particularly H3K27 trimethylation, leads to the structural and functional maturation of Paneth cells during postnatal development.


Subject(s)
Histones , Paneth Cells , Animals , Cell Differentiation , Epigenesis, Genetic/genetics , Intestinal Mucosa , Mice , Paneth Cells/pathology , Paneth Cells/physiology , Weaning
10.
Histopathology ; 80(3): 529-537, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34608656

ABSTRACT

AIMS: This study investigated the relationship between the differentiation of tumour cells into crypts, which is determined by cell differentiation into Paneth and neuroendocrine cells, and tumour infiltration in gastric dysplasia. METHODS AND RESULTS: The lesions were endoscopically biopsied low-grade dysplasia (LGD), endoscopically resected high-grade dysplasia (HGD) or cancer with submucosal invasion. LGD (n = 32) displayed crypt differentiation across the entire width of the tumour in all cases. Crypt differentiation was identified as a characteristic of tumours with low biological malignancy. HGD (n = 40) included tumours with a mixture of areas with and without crypt differentiation (n = 25) and tumours with crypt differentiation throughout the entire width (n = 15). Of the cancers with submucosal invasion (n = 30), the morphological progression of the HGD area with crypt differentiation, the HGD area without crypt differentiation and invasive cancer without crypt differentiation was confirmed for 23 samples. In two lesions, invasive cancer without crypt differentiation developed from HGD without crypt differentiation throughout the tumour width. In five samples, well-differentiated tubular adenocarcinoma with crypt differentiation developed from HGD with crypt differentiation and invaded with lamina propria-like stroma. CONCLUSIONS: Loss of crypt differentiation could be an objective indicator of infiltration in the progression of HGD to invasive cancer. The invasive potential of dysplasia depends upon the presence or absence of crypt differentiation.


Subject(s)
Biopsy/classification , Cell Differentiation , Paneth Cells/pathology , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Aged , Endoscopy, Gastrointestinal , Female , Humans , Male , Precancerous Conditions/classification , Retrospective Studies , Stomach Neoplasms/classification , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology
11.
Cells ; 10(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34831152

ABSTRACT

BACKGROUND: Previous studies in mice indicated that Paneth cells and c-Kit-positive goblet cells represent the stem cell niche of the small intestine and colon, respectively, partly by supporting Wnt and Notch activation. Whether these cell populations play a similar role in human intestinal cancer remains unexplored. METHODS: We performed histopathological evaluation and immunohistochemical analysis of early colorectal adenomas and carcinoma adenoma from patients at the Hospital del Mar in Barcelona. We then determined the possible correlation between the different parameters analyzed and with patient outcomes. RESULTS: Paneth cells accumulate in a subset of human colorectal adenomas directly associated with Notch and Wnt/ß-catenin activation. Adenoma areas containing Paneth cells display increased vessel density in the lamina propria and higher levels of the stem cell marker EphB2. In an in-house cohort of 200 colorectal adenoma samples, we also observed a significant correlation between the presence of Paneth cells and Wnt activation. Kaplan-Meier analysis indicated that early adenoma patients carrying Paneth cell-positive tumors display reduced disease-free survival compared with patients with Paneth cell-free lesions. CONCLUSIONS: Our results indicate that Paneth cells contribute to the initial steps of cancer progression by providing the stem cell niche to adenoma cells, which could be therapeutically exploited.


Subject(s)
Adenoma/metabolism , Colorectal Neoplasms/pathology , Paneth Cells/pathology , Signal Transduction , beta Catenin/metabolism , Humans , Kaplan-Meier Estimate , Prognosis , Proto-Oncogene Proteins c-kit/metabolism , Receptor, EphB2/metabolism , Receptors, Notch/metabolism , Synaptophysin/metabolism , Wnt Proteins/metabolism
12.
Elife ; 102021 10 11.
Article in English | MEDLINE | ID: mdl-34633285

ABSTRACT

Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection, and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady-state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an TORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.


Subject(s)
Cell Death , Interferon-gamma/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Paneth Cells/pathology , Animals , Female , Interferon-gamma/genetics , Intestine, Small/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Toxoplasma , Toxoplasmosis/pathology
13.
Cells ; 10(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34440876

ABSTRACT

Paneth cells are specialized intestinal epithelial cells that are located at the base of small intestinal crypts and play a vital role in preserving the gut epithelium homeostasis. Paneth cells act as a safeguard from bacterial translocation across the epithelium and constitute the niche for intestinal stem cells in the small intestine by providing multiple niche signals. Recently, Paneth cells have become the focal point of investigations defining the mechanisms underlying the epithelium-microbiome interactions and pathogenesis of chronic gut mucosal inflammation and bacterial infection. Function of Paneth cells is tightly regulated by numerous factors at different levels, while Paneth cell defects have been widely documented in various gut mucosal diseases in humans. The post-transcription events, specific change in mRNA stability and translation by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) are implicated in many aspects of gut mucosal physiology by modulating Paneth cell function. Deregulation of RBPs and ncRNAs and subsequent Paneth cell defects are identified as crucial elements of gut mucosal pathologies. Here, we overview the posttranscriptional regulation of Paneth cells by RBPs and ncRNAs, with a particular focus on the increasing evidence of RBP HuR and long ncRNA H19 in this process. We also discuss the involvement of Paneth cell dysfunction in altered susceptibility of the intestinal epithelium to chronic inflammation and bacterial infection following disrupted expression of HuR and H19.


Subject(s)
Paneth Cells/physiology , RNA, Untranslated/metabolism , RNA-Binding Proteins/metabolism , Gene Expression Regulation , Homeostasis , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Paneth Cells/metabolism , Paneth Cells/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
14.
J Mol Med (Berl) ; 99(10): 1413-1426, 2021 10.
Article in English | MEDLINE | ID: mdl-34129057

ABSTRACT

Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events.Key messages• Transgenic mice homozygous for PRL-3 overexpression die early.• PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity.• PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine.• PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion.• Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.


Subject(s)
Homeostasis/physiology , Immediate-Early Proteins/metabolism , Intestinal Mucosa/metabolism , Intestines/metabolism , Neoplasm Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Disease Models, Animal , Female , Humans , Intestinal Mucosa/pathology , Intestines/pathology , Male , Mice , Mice, Transgenic , Organoids/metabolism , Organoids/pathology , Paneth Cells/metabolism , Paneth Cells/pathology , Signal Transduction/physiology , Stem Cells/metabolism , Stem Cells/pathology
15.
Cells ; 10(6)2021 05 29.
Article in English | MEDLINE | ID: mdl-34072441

ABSTRACT

Paneth cell defects in Crohn's disease (CD) patients (called the Type I phenotype) are associated with worse clinical outcomes. Recent studies have implicated mitochondrial dysfunction in Paneth cells as a mediator of ileitis in mice. We hypothesized that CD Paneth cells exhibit impaired mitochondrial health and that mitochondrial-targeted therapeutics may provide a novel strategy for ileal CD. Terminal ileal mucosal biopsies from adult CD and non-IBD patients were characterized for Paneth cell phenotyping and mitochondrial damage. To demonstrate the response of mitochondrial-targeted therapeutics in CD, biopsies were treated with vehicle or Mito-Tempo, a mitochondrial-targeted antioxidant, and RNA transcriptome was analyzed. During active CD inflammation, the epithelium exhibited mitochondrial damage evident in Paneth cells, goblet cells, and enterocytes. Independent of inflammation, Paneth cells in Type I CD patients exhibited mitochondrial damage. Mito-Tempo normalized the expression of interleukin (IL)-17/IL-23, lipid metabolism, and apoptotic gene signatures in CD patients to non-IBD levels. When stratified by Paneth cell phenotype, the global tissue response to Mito-Tempo in Type I patients was associated with innate immune, lipid metabolism, and G protein-coupled receptor (GPCR) gene signatures. Targeting impaired mitochondria as an underlying contributor to inflammation provides a novel treatment approach for CD.


Subject(s)
Antioxidants/therapeutic use , Crohn Disease/drug therapy , Crohn Disease/metabolism , Inflammation/drug therapy , Mitochondria/metabolism , Biopsy/methods , Enterocytes/cytology , Epithelium/drug effects , Epithelium/pathology , Humans , Lipid Metabolism/physiology , Paneth Cells/pathology , Phenotype
16.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G171-G184, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34159811

ABSTRACT

Vitamin D deficiency is an environmental factor involved in the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms surrounding its role remain unclear. Previous studies conducted in an intestinal epithelial-specific vitamin D receptor (VDR) knockout model suggest that a lack of vitamin D signaling causes a reduction in intestinal autophagy. A potential link between vitamin D deficiency and dysregulated autophagy is microRNA (miR)-142-3p, which suppresses autophagy. In this study, we found that wild-type C57BL/6 mice fed a vitamin D-deficient diet for 5 wk had increased miR-142-3p expression in ileal tissues compared with mice that were fed a matched control diet. Interestingly, there was no difference in expression of key autophagy markers ATG16L1 and LC3II in the ileum whole tissue. However, Paneth cells of vitamin D-deficient mice were morphologically abnormal and had an accumulation of the autophagy adaptor protein p62, which was not present in the total crypt epithelium. These findings suggest that Paneth cells exhibit early markers of autophagy dysregulation within the intestinal epithelium in response to vitamin D deficiency and enhanced miR-142-3p expression. Finally, we demonstrated that treatment-naïve IBD patients with low levels of vitamin D have an increase in miR-142-3p expression in colonic tissues procured from "involved" areas of the disease. Taken together, our findings demonstrate that insufficient vitamin D levels alter expression of autophagy-regulating miR-142-3p in intestinal tissues of mice and patients with IBD, providing insight into the mechanisms by which vitamin D deficiency modulates IBD pathogenesis.NEW & NOTEWORTHY Vitamin D deficiency has a role in IBD pathogenesis, and although the mechanisms surrounding its role remain unclear, it has been suggested that autophagy dysregulation is involved. Here, we show increased ileal expression of autophagy-suppressing miR-142-3p in mice that were fed a vitamin D-deficient diet and in "involved" colonic biopsies from pediatric IBD patients with low vitamin D. miR-142-3p serves as a potential mechanism mediating vitamin D deficiency and reduced autophagy.


Subject(s)
Ileum/metabolism , Inflammatory Bowel Diseases/metabolism , MicroRNAs/genetics , Vitamin D Deficiency/metabolism , Vitamin D/metabolism , Adolescent , Animals , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cells, Cultured , Child , HCT116 Cells , HeLa Cells , Humans , Ileum/pathology , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Paneth Cells/metabolism , Paneth Cells/pathology , Vitamin D Deficiency/complications
17.
Toxicol Appl Pharmacol ; 422: 115561, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33957193

ABSTRACT

Arsenic is a global health concern that causes toxicity through ingestion of contaminated water and food. In vitro studies suggest that arsenic reduces stem and progenitor cell differentiation. Thus, this study determined if arsenic disrupted intestinal stem cell (ISC) differentiation, thereby altering the number, location, and/or function of intestinal epithelial cells. Adult male C57BL/6 mice were exposed to 0 or 100 ppb sodium arsenite (AsIII) through drinking water for 5 weeks. Duodenal sections were collected to assess changes in morphology, proliferation, and cell types. qPCR analysis revealed a 40% reduction in Lgr5 transcripts, an ISC marker, in the arsenic-exposed mice, although there were no changes in the protein expression of Olfm4. Secretory cell-specific transcript markers of Paneth (Defa1), Goblet (Tff3), and secretory transit amplifying (Math1) cells were reduced by 51%, 44%, and 30% respectively, in the arsenic-exposed mice, indicating significant impacts on the Wnt-dependent differentiation pathway. Further, protein levels of phosphorylated ß-catenin were reduced in the arsenic-exposed mice, which increased the expression of Wnt-dependent transcripts CD44 and c-myc. PCA analysis, followed by MANOVA and regression analyses, revealed significant changes and correlations between Lgr5 and the transit amplifying (TA) cell markers Math1 and Hes1, which are in the secretory cell pathway. Similar comparisons between Math1 and Defa1 show that terminal differentiation into Paneth cells is also reduced in the arsenic-exposed mice. The data suggests that ISCs are not lost following arsenic exposure, but rather, specific Wnt-dependent progenitor cell formation and terminal differentiation in the small intestine is reduced.


Subject(s)
Arsenites/toxicity , Cell Differentiation/drug effects , Duodenum/drug effects , Paneth Cells/drug effects , Receptors, G-Protein-Coupled/metabolism , Sodium Compounds/toxicity , Stem Cells/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Down-Regulation , Duodenum/metabolism , Duodenum/pathology , Male , Mice, Inbred C57BL , Paneth Cells/metabolism , Paneth Cells/pathology , Receptors, G-Protein-Coupled/genetics , Stem Cells/metabolism , Stem Cells/pathology , Trefoil Factor-3/genetics , Trefoil Factor-3/metabolism , Wnt Signaling Pathway , alpha-Defensins/genetics , alpha-Defensins/metabolism
18.
Cell Rep ; 35(3): 109026, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882314

ABSTRACT

Organoids allow the recapitulation of intestinal homeostasis and cancerogenesis in vitro; however, RNA sequencing (RNA-seq)-based methods for drug screens are missing. We develop targeted organoid sequencing (TORNADO-seq), a high-throughput, high-content drug discovery platform that uses targeted RNA-seq to monitor the expression of large gene signatures for the detailed evaluation of cellular phenotypes in organoids. TORNADO-seq is a fast, highly reproducible time- and cost-effective ($5 per sample) method that can probe cell mixtures and their differentiation state in the intestinal system. We apply this method to isolate drugs that enrich for differentiated cell phenotypes and show that these drugs are highly efficacious against cancer compared to wild-type organoids. Furthermore, TORNADO-seq facilitates in-depth insight into the mode of action of these drugs. Our technology can easily be adapted to many other systems and will allow for more systematic, large-scale, and quantitative approaches to study the biology of complex cellular systems.


Subject(s)
Antineoplastic Agents/pharmacology , Early Detection of Cancer/methods , Gene Expression Regulation, Neoplastic/drug effects , Organoids/drug effects , Prescription Drugs/pharmacology , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Cell Differentiation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Discovery/methods , Drug Repositioning , Enterocytes/drug effects , Enterocytes/metabolism , Enterocytes/pathology , Gene Regulatory Networks , Goblet Cells/drug effects , Goblet Cells/metabolism , Goblet Cells/pathology , High-Throughput Screening Assays , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Organoids/metabolism , Organoids/pathology , Paneth Cells/drug effects , Paneth Cells/metabolism , Paneth Cells/pathology , Prescription Drugs/chemistry , Prescription Drugs/classification , RNA-Seq , Sequence Analysis, RNA , Small Molecule Libraries/chemistry , Small Molecule Libraries/classification
19.
Poult Sci ; 100(2): 615-622, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518114

ABSTRACT

The rapid renewal and repair of the intestinal mucosa are based on intestinal stem cells (ISC), which are located at the crypt bottom. Paneth cells are an essential component in the crypt, which served as the niche for ISC development. However, in the chicken, how the function of Paneth cells changes during intestinal inflammation is unclear and is the key to understand the mechanism of mucosal repair. In the present study, 36 HyLine White chickens (7 d of age, n = 6) were randomly divided into 1 control and 5 lipopolysaccharide (LPS) injection groups. The chickens were injected (i.p.) with PBS in the control group, however, were injected (i.p.) with LPS (10 mg/kg BW) in the LPS injection groups, which would be sampled at 5 time points (1 h postinjection [hpi], 2 hpi, 4 hpi, 6 hpi, and 8 hpi). Results showed that tumor necrosis factor-α mRNA transcription in duodenal tissue increased gradually since 1 hpi, peaked at 4 hpi, and then reduced remarkably, indicating that 4 hpi of LPS was the early stage of intestinal inflammation. Meanwhile, the MUC2 expression in duodenal tissue was dramatically reduced since 1 hpi of LPS. The ISC marker, Lgr5 and Bmi1, in the duodenal crypt were reduced from 1 hpi to 4 hpi and elevated later. Accordingly, the hydroethidine staining showed that the reactive oxygen species level, which drives the differentiation of ISC, in the duodenal crypt reduced obviously at 1 hpi and recovered gradually since 4 hpi. The analysis of Paneth cells showed that many swollen mitochondria appeared in Paneth cells at 4 hpi of LPS. Meanwhile, the Lysozyme transcription in the duodenal crypt was substantially decreased since 1 hpi of LPS. However, the Wnt3a and Dll1 in duodenal crypt decreased at 1 hpi of LPS, then increased gradually. In conclusion, Paneth cells were impaired at the early stage of intestinal inflammation, then recovered rapidly. Thus, the ISC activity was reduced at first and recovery soon.


Subject(s)
Chickens , Gastroenteritis/veterinary , Paneth Cells/pathology , Poultry Diseases/pathology , Animals , Duodenum/cytology , Duodenum/pathology , Duodenum/ultrastructure , Gastroenteritis/pathology , Intestinal Mucosa/pathology , Microscopy, Electron, Transmission/veterinary , Paneth Cells/ultrastructure , Random Allocation , Stem Cells/pathology
20.
Biochem Biophys Res Commun ; 545: 14-19, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33529805

ABSTRACT

Paneth cells and Lgr5+ intestinal stem cells (Lgr5+ ISCs) constitute the stem cell niche and maintain small intestinal epithelial integrity by recognizing various niche factors derived from subepithelial cells and external antigens. Although it has been known that interferon-γ (IFN-γ), a Th1 cytokine, is associated with intestinal epithelial disruption during inflammation as a niche factor, dynamics of Paneth cells and Lgr5+ ISCs in response to IFN-γ remain to be understood. Here we show that CAG-tdTomato;Lgr5-EGFP (CT-LE) mice generated in this study enable to identify Paneth cells and Lgr5+ ISCs separately by fluorescence signals. Lgr5+ ISCs underwent cell death a little earlier than Paneth cells in response to IFN-γ by simultaneous tracking using CT-LE mice. In addition, the timing of cell death in most Paneth cells overlapped with Lgr5+ ISCs, suggesting that Paneth cell depletion is induced directly by IFN-γ. Taken together, we established a novel simultaneous stem cell niche tracking method and clarified the involvement of both Paneth cells and Lgr5+ ISCs in stem cell niche damage induced by IFN-γ, further contribute to understanding the mechanism for maintaining intestinal homeostasis by stem cell niche.


Subject(s)
Interferon-gamma/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Paneth Cells/drug effects , Paneth Cells/pathology , Stem Cells/drug effects , Stem Cells/pathology , Animals , Cell Death/drug effects , Cell Death/physiology , Computer Systems , Homeostasis/drug effects , Homeostasis/physiology , Interferon-gamma/physiology , Intestinal Mucosa/physiology , Mice , Mice, Transgenic , Paneth Cells/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Interferon/metabolism , Stem Cell Niche/drug effects , Stem Cell Niche/physiology , Stem Cells/physiology , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...